Attribution of Regional Radiative Forcing Due to Tropospheric Ozone:

A Step Towards Climate Credit for Reductions in Emissions of O₃

¹ Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, USA
²Department of Geosciences, Princeton University, Princeton, USA
³Geophysical Fluid Dynamics Laboratory, Princeton, USA
'vnalk@princeton.edu

1. Motivation

- **♣**Tropospheric ozone (O₃) is the **3rd most important greenhouse gas** after CO₂ and CH₄ with a mean forcing of **0.40 Wm**⁻²
- 4O_3 is a **secondary pollutant** and its production depends nonlinearly on the concentration of its short-lived precursors **nitrogen** oxide (NO_x), carbon monoxide (CO), and non-methane hydrocarbons (NMHCs), in addition to CH₄
- ♣Attributing the responsibility for radiative forcing due to O₃ to specific countries is not as straightforward as it is for long-lived greenhouse gases, because it depends on the location of precursor emissions as well as on where the O₃ is formed and transported

2. Objectives

 \d Quantitatively estimate the reduction in radiative forcing from tropospheric O_3 attainable through potentially feasible reduction in the emissions of its precursors (NO_x alone and combined NO_x , CO, & NMHCs) from major regions of the world

3. Methodology

Tools: MOZART 3-D Chemical Transport Model to simulate global O₃ distribution and the GFDL Radiative Transfer Model to calculate O₃ radiative forcing

Approach: Simulate changes relative to 1990 base year in global O₃ distribution resulting from 10% reduction in surface anthropogenic

 $A.NO_x$ emissions from each of the 9 regions shown below $B.global\ NO_x$ emissions

C.combined NO_x, CO, & NMHCs emissions from EU, NA, and SE

D.combined global NO_x, CO, & NMHCs emissions

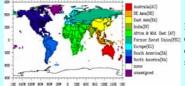
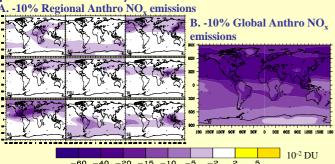
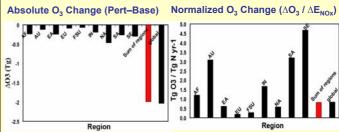



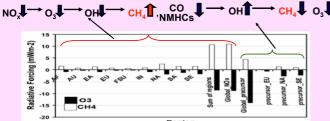
Fig1. Surface anthropogenic NO_x emissions were reduced by 10% from each of these regions of the world for simulation A.


4. Change in annual tropospheric O₃ column (perturbation-base)

♣The largest O₃ column reductions occur locally near the source of the emissions

♣The spatial distribution of O₃ column reduction from global 10% anthropogenic NO_x emission reductions is similar to the sum of individual regional column reductions

5. Change in annual global O₃ burden



4The global O_3 reduction from reduced NO_x emissions depends on the amount of NO_x reduced from a region and the location of the region - largest reduction from North America followed by Southeast Asia

≰The sensitivity of global O₃ change to NO_x reductions is highest for low NO_x emitting regions (Southeast Asia, South America and Australia) and lowest for high NO_x emitting regions (Europe, the Former Soviet Union) with concentrated emissions

♣The regional reductions in global O₃ burden are additive

6. Radiative forcing due to changes in O_3 and CH_4 resulting from a 10% reduction in surface anthropogenic emissions

extstyle=4Changes in CH₄ and O₃ concentrations resulting from NO_x emission reductions produce radiative forcing changes that largely offset each other leaving a small residual forcing that is positive for all regions except SE and IN

♣In contrast, for combined reductions of anthropogenic emissions of NOx, CO, and NMHCs, changes in O₃ and CH₄ concentrations result in a net reduction in the radiative forcing suggesting an overall cooling

7. Conclusions

- **4**Ozone production and resulting distributions depend strongly on the location of NO_x emissions
 - $4O_3$ changes are most sensitive to NO_x reductions from low- NO_x regions (SE, SA, IN, AU) and least sensitive to high NO_x regions (EU, FSU, NA)
- ♣The net radiative forcing from only NO_x reductions due to changes in CH₄ and O₃ is **POSTIVE** for all regions except for SE and IN
- **4**Combined reduction of anthropogenic emissions of all O₃ precursors yields a net **NEGATIVE** climate forcing
 - ♣Therefore, a climate treaty seeking to obtain co-benefits from reduced radiative forcing and air pollution mitigation could find further examinations of credits for simultaneous reductions of regional emissions of NO_x, CO, and NMHCs worthwhile